45 research outputs found

    Stevenson, Frye, and the structure of romance

    Get PDF
    This thesis looks at the work of Robert Louis Stevenson in the context of Northrop Frye's theory of archetypes and at the operations of the conventions of romance in relation to structuralist and post-structuralist theories of narrative. It proposes the unsustainability of the traditional or institutionalised model of romance provided by Frye and considers, through Stevenson's essays and fictions, the development of romance as a modern idiom. Using Frye's ideas as a basis for further study, this thesis seeks to demonstrate that romance is a progressive rather than conservative mode of fiction. Through the ideas expressed by Stevenson in his various guises as an author and theorist, it presents a theory of romance as a genre in which the functions of narrative undergo their most radical shifts and deviations from the conventional bases of form.Following the lead of his essays, it is shown that Stevenson's romances deliberately set in motion a system of conventional elements which, while they produce a dynamic narrative structure, tend also to exceed the sustainable limits of the structures they are engaged in. By no means aimless, these activities represent an attempt by Stevenson to recreate 'the certain almost sensual and quite illogical tendencies in man'* which, he says, occasion the formation of romance, but which are paradoxically incompatible with the logical conditions of romance as a conventional mechanism. Consequently, it is demonstrated that, if Frye represents the culmination of romance as a 'tradition' (or a point at which the structure of romance can be audited and catalogued as a tradition), Stevenson, acting prior to Frye, represents a point at which the underlying assumptions of this tradition are preclusively denied

    The role of sediment supply and sea-level changes on a submerging coast, past changes and future management implications

    Get PDF
    Geomorphological, geophysical, archaeological and documentary investigations have been employed to establish the variation of sea level change, sediment supply and geological control from the Late-Holocene, through the Historical period to the Present day, in Sanday. Techniques such as Ground-Penetrating Radar and geomorphological Radar and geomorphological surveying have identified a suite of gravel ridge recurves and placed them within their geomorphological context. The provisional regional sea level curve has been updated and clarified following the discovery and successful dating of a submerged forest. This sea level curve was then used to constrain the development of the coast of Sanday into separate time period. A range of archaeological and historical evidence also informed and corroborated the geomorphological evidence to allow the island’s coastal development to be established over the last few thousand years towards the present day, where differential-GPS and sonar techniques allowed these long-term trends to be placed into their modern context. Island-building occurred during Holocene submergence along with other radical changes to the shape and form of the coastline, all reflecting the changing dominance between the three controlling factors. The accepted outcome of submergence is transgression and fragmentation of islands rather than island building and this is wholly a result of a healthy sediment supply at the early stages. However, this sediment source has since begun to diminish and fragmentation, erosion and transgression may well be the outcome of the present trends in Sanday. This coastal change scenario has been projected forward, using climate change scenarios, to raise significant questions not only for Sanday and those regions which have historically experienced submergence, but also for those areas which previously experienced emergence and more recently are starting to be affected by relative sea level ris

    A national coastal erosion susceptibility model for Scotland

    Get PDF
    The upland nature of the Scottish landscape means that much of the social and economic activity has a coastal bias. The importance of the coast is further highlighted by the wide range of ecosystem services that coastal habitats provide. It follows that the threat posed by coastal erosion and flooding has the potential to have a substantial effect on the socioeconomic activity of the whole country. Currently, the knowledge base of coastal erosion is poor and this serves to hinder the current and future management of the coast. To address this knowledge gap, two interrelated models have been developed and are presented here: the Underlying Physical Susceptibility Model (UPSM) and the Coastal Erosion Susceptibility Model (CESM). The UPSM is generated within a GIS at a 50 m2 raster of national coverage, using data relating to ground elevation, rockhead elevation, wave exposure and proximity to the open coast. The CESM moderates the outputs of the UPSM to include the effects of sediment supply and coastal defence data. When validated against locations in Scotland that are currently experiencing coastal erosion, the CESM successfully identifies these areas as having high susceptibility. This allows the UPSM and CESM to be used as tools to identify assets inherently exposed to coastal erosion, areas where coastal erosion may exacerbate coastal flooding, and areas are inherently resilient to erosion, thus allow more efficient and effective management of the Scottish coast

    A method for modelling coastal erosion risk: the example of Scotland

    Get PDF
    It is thought that 70% of beaches worldwide are experiencing erosion (Bird in Coastline changes: a global review, Wiley, Hoboken, 1985), and as global sea levels are rising and expected to accelerate, the management of coastal erosion is now a shared global issue. This paper aims to demonstrate a method to robustly model both the incidence of the coastal erosion hazard, the vulnerability of the population, and the exposure of coastal assets to determine coastal erosion risk, using Scotland as a case study. In Scotland, the 2017 Climate Change Risk Assessment for Scotland highlights the threat posed by coastal erosion to coastal assets and the Climate Change (Scotland) Act 2009 requires an Adaptation Programme to address the risks posed by climate change. Internationally, an understanding and adaption to coastal hazards is imperative to people, infrastructure and economies, with Scotland being no exception. This paper uses a Coastal Erosion Susceptibility Model (CESM) (Fitton et al. in Ocean Coast Manag 132:80–89. https://doi.org/10.1016/j.ocecoaman.2016.08.018 , 2016) to establish the exposure to coastal erosion of residential dwellings, roads, and rail track in Scotland. In parallel, the vulnerability of the population to coastal erosion, using a suite of indicators and Experian Mosaic Scotland geodemographic classification, is also presented. The combined exposure and vulnerability data are then used to determine coastal erosion risk in Scotland. This paper identifies that 3310 dwellings (a value of £524 m) are exposed to erosion, and the Coastal Erosion Vulnerability Index (CEVI) identifies 1273 of these are also considered to be highly vulnerable to coastal erosion, i.e. at high risk. Additionally, the CESM classified 179 km (£1.2 bn worth) of road and 13 km of rail track (£93 m to £2 bn worth) to be exposed. Identifying locations and assets that are exposed and at risk from coastal erosion is crucial for effective management and enables proactive, rather that reactive, decisions to be made at the coast. Natural hazards and climate change are set to impact most on the vulnerable in society. It is therefore imperative that we begin to plan, manage, and support both people and the environment in a manner which is socially just and sustainable. We encourage a detailed vulnerability analysis, such as the CEVI demonstrated here for Scotland, to be included within future coastal erosion risk research. This approach would support a more sustainable and long-term approach to coastal management decisions

    Progress in marine geoconservation in Scotland’s seas : assessment of key interests and their contribution to Marine Protected Area network planning

    Get PDF
    This study was part-funded by Marine Scotland and was undertaken as part of the Scottish Marine Protected Areas (MPA) Programme, a joint initiative between Marine Scotland, Historic Scotland, Scottish Natural Heritage (SNH) and the Joint Nature Conservation Committee (JNCC).Geoconservation in the marine environment has been largely overlooked, despite a wealth of accumulated information on marine geology and geomorphology and clear links between many terrestrial and marine features. As part of the wider characterisation of Scotland’s seas, this study developed criteria and a methodology that follow the established principles of the terrestrial, Great Britain-wide geoconservation audit, the Geological Conservation Review, to assess geodiversity key areas on the seabed. Using an expert judgement approach, eight geodiversity feature categories were identified to represent the geological and geomorphological processes that have influenced the evolution and present-day morphology of the Scottish seabed: Quaternary of Scotland; Submarine Mass Movement; Marine Geomorphology of the Scottish Deep-Ocean Seabed; Seabed Fluid and Gas Seep; Cenozoic Structures of the Atlantic Margin; Marine Geomorphology of the Scottish Shelf Seabed; Coastal Geomorphology of Scotland; and Biogenic Structures of the Scottish Seabed. Within these categories, 35 key areas were prioritised for their scientific value. Specific interests range from large-scale landforms (e.g. submarine landslides, sea-mounts and trenches) to fine-scale dynamic features (e.g. sand waves). Although these geodiversity interests provided supporting evidence for the identification and selection of a suite of Nature Conservation Marine Protected Areas (MPAs) containing important marine natural features, they are only partially represented in these MPAs and existing protected areas. Nevertheless, a pragmatic approach is emerging to integrate as far as possible the conservation management of marine geodiversity with that of biodiversity and based on evidence of the sensitivity and vulnerability geological and geomorphological features on the seabed.PostprintPeer reviewe

    Watching the Grass Grow: Delineating Coastal Vegetation Edges from Satellite Imagery

    Get PDF
    Our coasts are increasingly under threat of climate change related risks such as sea level rise, increased erosion rates, and increased frequency and severity of storms and associated wave action. To identify and adequately support the communities at greatest risk of these impacts, regular and repeatable observations of coastal change are required. Shoreline positions offer a simplistic measure of geomorphic change across the intertidal zone, but they fluctuate significantly in macrotidal areas and are subject to tidal bias. To gain a broader understanding of the interplay of coastal processes, a coupling of change indicators is desirable. A more stable measure of coastal change, and one arguably more relevant to coastal communities and infrastructure, is the vegetation edge. Presented here is a Python toolkit which builds on the shoreline extraction tool CoastSat (https://doi.org/10.1016/j.envsoft.2019.104528), but adapted to automatically identify coastal vegetation edges from satellite imagery. A trained neural network classifies pixels and uses Weighted Peaks to extract sub-pixel contours between vegetation and non-vegetation classes. Sentinel-2 images offer the highest accuracy at the test site of St Andrews (RMSE of 10.4m). By taking advantage of the back catalogue of freely available satellite images, dense vegetation timeseries with an average observation interval of 12 days can be easily built to assess historic trends. Extracted vegetation edges are then compared with other derived coastal characteristics such as the vegetation transition zone, beach width, and dune slope, to infer relationships between these different change indicators and therefore create proxies for predicting different geomorphic regimes

    State-of-the-art in studies of glacial isostatic adjustment for the British Isles: a literature review

    Get PDF
    Understanding the effects of glacial isostatic adjustment (GIA) of the British Isles is essential for the assessment of past and future sea-level trends. GIA has been extensively examined in the literature, employing different research methods and observational data types. Geological evidence from palaeo-shorelines and undisturbed sedimentary deposits has been used to reconstruct long-term relative sea-level change since the Last Glacial Maximum. This information derived from sea-level index points has been employed to inform empirical isobase models of the uplift in Scotland using trend surface and Gaussian trend surface analysis, as well as to calibrate more theory-driven GIA models that rely on Earth mantle rheology and ice sheet history. Furthermore, current short-term rates of GIA-induced crustal motion during the past few decades have been measured using different geodetic techniques, mainly continuous GPS (CGPS) and absolute gravimetry (AG). AG-measurements are generally employed to increase the accuracy of the CGPS estimates. Synthetic aperture radar interferometry (InSAR) looks promising as a relatively new technique to measure crustal uplift in the northern parts of Great Britain, where the GIA-induced vertical land deformation has its highest rate. This literature review provides an in-depth comparison and discussion of the development of these different research approaches

    On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase

    Get PDF
    Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present SlideBase, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human Protein Atlas and BioGPS. Database URL: http://slidebase.binf.ku.d

    Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study.

    Get PDF
    PURPOSE: Cellular immune dysfunctions, which are common in intensive care patients, predict a number of significant complications. In order to effectively target treatments, clinically applicable measures need to be developed to detect dysfunction. The objective was to confirm the ability of cellular markers associated with immune dysfunction to stratify risk of secondary infection in critically ill patients. METHODS: Multi-centre, prospective observational cohort study of critically ill patients in four UK intensive care units. Serial blood samples were taken, and three cell surface markers associated with immune cell dysfunction [neutrophil CD88, monocyte human leucocyte antigen-DR (HLA-DR) and percentage of regulatory T cells (Tregs)] were assayed on-site using standardized flow cytometric measures. Patients were followed up for the development of secondary infections. RESULTS: A total of 148 patients were recruited, with data available from 138. Reduced neutrophil CD88, reduced monocyte HLA-DR and elevated proportions of Tregs were all associated with subsequent development of infection with odds ratios (95% CI) of 2.18 (1.00-4.74), 3.44 (1.58-7.47) and 2.41 (1.14-5.11), respectively. Burden of immune dysfunction predicted a progressive increase in risk of infection, from 14% for patients with no dysfunction to 59% for patients with dysfunction of all three markers. The tests failed to risk stratify patients shortly after ICU admission but were effective between days 3 and 9. CONCLUSIONS: This study confirms our previous findings that three cell surface markers can predict risk of subsequent secondary infection, demonstrates the feasibility of standardized multisite flow cytometry and presents a tool which can be used to target future immunomodulatory therapies. TRIAL REGISTRATION: The study was registered with clinicaltrials.gov (NCT02186522).The study was funded by Innovate UK (Sepsis 2: 101193), BD Biosciences and the National Institute for Academic Anaesthesia. Dr Conway Morris is supported by a Clinical Research Career Development Fellowship from the Wellcome Trust (WT 2055214/Z/16/Z). Dr Shankar-Hari is supported by the National Institute for Health Research Clinician Scientist Award (CS-2016-16- 011)

    Early PREdiction of sepsis using leukocyte surface biomarkers: the ExPRES-sepsis cohort study.

    Get PDF
    PURPOSE: Reliable biomarkers for predicting subsequent sepsis among patients with suspected acute infection are lacking. In patients presenting to emergency departments (EDs) with suspected acute infection, we aimed to evaluate the reliability and discriminant ability of 47 leukocyte biomarkers as predictors of sepsis (Sequential Organ Failure Assessment score ≥ 2 at 24 h and/or 72 h following ED presentation). METHODS: In a multi-centre cohort study in four EDs and intensive care units (ICUs), we standardised flow-cytometric leukocyte biomarker measurement and compared patients with suspected acute infection (cohort-1) with two comparator cohorts: ICU patients with established sepsis (cohort-2), and ED patients without infection or systemic inflammation but requiring hospitalization (cohort-3). RESULTS: Between January 2014 and February 2016, we recruited 272, 59 and 75 patients to cohorts 1, 2, and 3, respectively. Of 47 leukocyte biomarkers, 14 were non-reliable, and 17 did not discriminate between the three cohorts. Discriminant analyses for predicting sepsis within cohort-1 were undertaken for eight neutrophil (cluster of differentiation antigens (CD) CD15; CD24; CD35; CD64; CD312; CD11b; CD274; CD279), seven monocyte (CD35; CD64; CD312; CD11b; HLA-DR; CD274; CD279) and a CD8 T-lymphocyte biomarker (CD279). Individually, only higher neutrophil CD279 [OR 1.78 (95% CI 1.23-2.57); P = 0.002], higher monocyte CD279 [1.32 (1.03-1.70); P = 0.03], and lower monocyte HLA-DR [0.73 (0.55-0.97); P = 0.03] expression were associated with subsequent sepsis. With logistic regression the optimum biomarker combination was increased neutrophil CD24 and neutrophil CD279, and reduced monocyte HLA-DR expression, but no combination had clinically relevant predictive validity. CONCLUSIONS: From a large panel of leukocyte biomarkers, immunosuppression biomarkers were associated with subsequent sepsis in ED patients with suspected acute infection. CLINICAL TRIAL REGISTRATION: NCT02188992.The study was funded by Innovate UK (Sepsis 2: 101193). Dr Shankar-Hari is supported by the National Institute for Health Research Clinician Scientist Award (CS-2016-16-011). Dr Conway Morris is supported by a Clinical Research Career Development Fellowship from the Wellcome Trust (WT 2055214/Z/16/Z)
    corecore